学而不厌
孜孜不倦

自动机理论 Automata 斯坦福大学 Jeff Ullman

Coursera课程下载

课程名称: 自动机理论 Automata 斯坦福大学 Jeff Ullman

课程主页: 官网已下架

所在平台: Coursera

课程类别: 计算机科学

大学或机构: 斯坦福大学

讲师: Jeff Ullman

授课语言: 英语

提供字幕: 英语

课程文件大小: 760MB

课程介绍:

I am pleased to be able to offer free over the Internet a course on Automata Theory, based on the material I have taught periodically at Stanford in the course CS154. Students have access to screencast lecture videos, are given quiz questions, assignments and exams, receive regular feedback on progress, and can participate in a discussion forum. Those who successfully complete the course will receive a statement of accomplishment. You will need a decent Internet connection for accessing course materials, but should be able to watch the videos on your smartphone.

The course covers four broad areas: (1) Finite automata and regular expressions, (2) Context-free grammars, (3) Turing machines and decidability, and (4) the theory of intractability, or NP-complete problems.

Why Study Automata Theory?

This subject is not just for those planning to enter the field of complexity theory, although it is a good place to start if that is your goal. Rather, the course will emphasize those aspects of the theory that people really use in practice. Finite automata, regular expressions, and context-free grammars are ideas that have stood the test of time. They are essential tools for compilers. But more importantly, they are used in many systems that require input that is less general than a full programming language yet more complex than “push this button.”

The concepts of undecidable problems and intractable problems serve a different purpose. Undecidable problems are those for which no computer solution can ever exist, while intractable problems are those for which there is strong evidence that, although they can be solved by a computer, they cannot be solved sufficiently fast that the solution is truly useful in practice. Understanding this theory, and in particular being able to prove that a problem you are facing belongs to one of these classes, allows you to justify taking another approach — simplifying the problem or writing code to approximate the solution, for example.

During the course, I’m going to prove a number of things. The purpose of these proofs is not to torture you or confuse you. Neither are the proofs there because I doubt you would believe me were I merely to state some well-known fact. Rather, understanding how these proofs, especially inductive proofs, work, lets you think more clearly about your own work. I do not advocate proofs that programs are correct, but whenever you attempt something a bit complex, it is good to have in mind the inductive proofs that would be needed to guarantee that what you are doing really works in all cases.

课程压缩包下载地址(度盘链接):

资源下载此资源下载价格为6学币,请先
解压密码:xuebuyan.org 客服微信:amanda12321


友情提醒:

1、若遇到链接失效请加客服微信:amanda12321反馈,我们将在上线第一时间处理
2、课程制作成压缩包后通过百度网盘分享,需要下载解压之后才能正常观看;
3、课程视频为官网提供下载的最高清的分辨率MP4格式,字幕为srt外挂字幕。
4、官网没有提供答案,因此所有课程的测试和作业均不提供答案;
5、课程文件包含视频(MP4)、字幕(SRT)、字幕文本版(TXT)、阅读材料(html)和测试及作业(PDF或HTML),如果官网有提供下载,还将包含课件以及与课程相关的其它附件等。
6、百度网盘下载速度我们也无法控制,建议您先自行测试。
7、课程文件仅供您离线学习和参考,版权归原平台及作者所有,如果条件允许我们仍建议您通过coursera平台进行学习,可获得更优质的学习体验,完成课程还能获得相应证书,如果内容侵犯了您的权利请通知,我们将在收到通知24小时内删除内容。


未经允许不得转载:学不厌资源 » 自动机理论 Automata 斯坦福大学 Jeff Ullman

评论 抢沙发

评论前必须登录!